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Abstract The notion of a soliton as a quasiparticle in

the Frenkel–Kontorova system is substantiated. This

allows the use of the diffusive model for the description

of the processes of soliton creation and disappearance

at the chain ends. The Frenkel–Kontorova model is

modified through the addition of barriers with certain

height and concentration to the pinning profile of the

potential energy surface for the soliton motion along

the chain. The ratio of the relaxation times in ideal and

defective systems is estimated, and it is shown that the

relaxation rate can be reduced by ten and higher orders

of magnitude under quite reasonable assumptions.

Introduction

The Frenkel–Kontorova model (elastic Hookian chain

in a rigid harmonic substrate potential) [1] is widely

used in the theoretical studies of the physicochemical

properties of extended interacting incommensurate

atomic and molecular structures (see, e.g., [2–4]).

One of the most important results of these studies

consists in the revelation of so-called solitons (stable

regions of stretching or compressional deformation) in

such structures. The energetics of soliton formation,

the geometric parameters, and the activation energy

for the soliton motion along the elastic system (pinning

energy) have been found. In particular, it turned out

that the pinning energy in ideal Frenkel–Kontorova

models with reasonable parameters is much lower than

the soliton formation energy. This, in turn, should lead

to a high soliton creation and destruction (relaxation)

rates at the ends of elastic subsystem and, hence, to fast

establishment of thermodynamic equilibrium in the

system. On the other hand, the existence of long-lived

metastable states (e.g., glasses) is a well-established

fact for a wide range of systems, including supramo-

lecular ones. The question arises whether the Frenkel–

Kontorova model can be modified in such a way that

the relaxation time of excited states (solitons) increases

by ten or higher orders of magnitude. In this commu-

nication, we propose that the pinning profile of the

surface potential energy for the soliton motion along

the chain be modified by introducing additional barri-

ers. The diffusive model will be used to study the

problem of influence of the additional barriers and the

concentration of the relevant defects on the relaxation

process.

Statement of the problem

The energetic and geometric characteristics of the

equilibrium and transition states (of the conformers or

solitons) and the interaction parameters between the

deformation regions were numerically obtained in
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[5–8] for finite Frenkel–Kontorova systems with an

arbitrary incommensurability c = b/h between the

interacting partners (b is the equilibrium bond length

in a free elastic chain, and h is the potential period of

the rigid substrate). It turned out that, for a relatively

small parameter z £ 0.10, the ‘‘exact’’ numerical results

obtained even for the chains containing several tens of

elements virtually coincide with the analytic data

obtained for the infinite chains using the well-known

transition procedure from discrete to continuous argu-

ment [1] (z = 2pA/(kh2), where A is the amplitude of

the substrate potential and k is the bond rigidity in the

chain). In our notation for the main soliton character-

istics, such as the formation (creation) energy Et(z, c)

from the soliton-free state ([0, 0] conformer), the

maximal bond deformation d t(z, c) in the soliton, and

the activation energy Ea
t (z, c) for the soliton motion

along the chain, the following expressions are obtained

(the upper index t corresponds to the theoretical

value):

Etðz; 1Þ ¼ 4

p

ffiffiffiffiffi

2z

p

r

;

Et
aðz; cÞ ¼ Etðz; 1Þ ¼ 32 expð�p2=

ffiffiffiffiffiffiffiffi

2pz
p

Þ
ðin units of kh2=2Þ; ð1Þ

and dtðz; cÞ ¼ dtðz; 1Þ � ðc� 1Þ ¼
ffiffiffiffi

2z
p

q

� ðc� 1Þ (in

units of h); the sign (–) corresponds to the stretching

soliton ([1, 0] conformer) and the sign (+) corresponds

to the compression soliton ([0, 1] conformer).

One can readily see that

Etðz; cÞ ¼ Etðz; 1Þ � 2ðc� 1Þ. ð2Þ

This follows from the fact that the soliton shape (the

set of the corresponding bond lengths li in units of h)

and, hence, the interaction with the periodic substrate

potential is independent of c, while the deformational

contribution to the soliton formation energy from the

[0, 0] conformer with an incommensurability of (c – 1)

is (in units of kh2/2):

Edðz; cÞ ¼
X

½ðli � cÞ2 � ðc� 1Þ2�

¼
X

ðli � 1Þðli � 1� 2ðc� 1ÞÞ

¼
X

ðli � 1Þ2 � 2ðc� 1Þ
X

ðli � 1Þ

¼ Edðz; 1Þ � 2ðc� 1Þð�1Þ

where Ed(z, 1) is the deformational contribution taken

included in Et(z, 1) for the soliton formation energy

from the [0, 0] conformer with c = 1, and
P

ðli � 1Þ ¼ �1 for the stretching and compression

solitons, respectively. The summation goes over the

region containing soliton.

Clearly, Eqs. 1 and 2 are also valid for the case

of a direct numerical calculation of the E(z, 1) and

d(z, 1) values. Besides, one should take into account

that, in the case that there are no excited states in a

finite-length system (at small z), these expressions

fail.

It is seen from Eq. 2 that the energy of solitonic state

formation from the [0, 0] conformer becomes negative

for z � z� ¼ p3ðc� 1Þ2=8. This signifies that the

ground state of the system necessarily contains solitons

for these z values, so that the soliton-free state ([0, 0]

conformer) becomes excited state.

Results and discussion

The results of numerical calculations (hereafter

referred to as experimental results) of the E, Ea, and

d dependences on z are shown in Figs. 1, 2, 3 together

with the corresponding theoretical curves. One can see

from these data that the theoretical estimates virtually

coincide with the experimental results at z < 0, 1.

However, it turned out that the maximal bond defor-

mations in the transition and equilibrium states of the

chain are, respectively, noticeably smaller and larger

than the corresponding theoretical values (Fig. 3).

This, likely, explains why the theoretical pinning

energies at z > 1 are appreciably higher than the

results of numerical experiment (2). The experimental

formation energies of a soliton in the equilibrium state

(with allowance for pinning) virtually coincide with

their theoretical values for all z (Fig. 1). However, this

coincidence is a consequence of the mutual compen-

sation of the systematically overstated theoretical

formation and pinning energies, as compared to their

experimental values.

The calculations also show that the center of gravity

of the soliton (first moment M1 of its shape) in the

equilibrium and transition states is located, respec-

tively, in the substrate potential well and at the

potential peak. The calculations of the second mo-

ments M2 of the soliton shape for these extremal points

showed that, first, M2 ~ z–1 and they virtually coincide

(to a few % at z < 0.3) in the equilibrium and

transition states (i.e., solitons do not change their

shape) and, second, the value of M2 for the stretching

solitons is by a factor of �1, 23 larger than for M2 of

the compression solitons. The moments M1 and M2

were defined using the standard expressions:

123

J Mater Sci (2007) 42:1122–1126 1123



0

10

20

30

40

50

60

70

80

90

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

z

d
, %

3

2 

1

Fig. 3 (1, 2) Experimental
(for the equilibrium and
transition states, respectively)
and (2) theoretical z
dependences of the maximal
bond deformation in the
soliton (in%)
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Fig. 2 (1) Experimental and
(2) theoretical z dependences
(in units of kh2/2) of the
activation (pinning) energy
for the soliton motion in the
chain
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Fig. 1 (1) Experimental and
(2, 3) theoretical dependences
(with and without correction
for pinning, respectively) of
the soliton formation energies
on z (in units of kh2/2)
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M1 ¼
R

DqðyÞy dy
R

DqðyÞ dy
; M2 ¼

R

DqðyÞy2 dy
R

DqðyÞ dy
�M2

1;

where DqðyÞ ¼
P

dðy� yiÞ � d y� i� 1
2

� �� �

is the

‘‘density’’ difference, d(y) is the delta-function, yi is

the dimensionless coordinate of the ith element in the

solitonic state, and (i + 1/2) is the coordinate of the ith

element in the soliton-free state. The corresponding

integration domain must cover the entire soliton, so

that
R

DqðyÞ dy ¼ �1 for the compression and stretch-

ing soliton, respectively.

Therefore, to describe the properties (including

relaxational ones) of the Frenkel–Kontorova systems

containing solitons, one should, first of all, determine

their effective mass if they are considered as quasipar-

ticles. Note that the creation or destruction of solitons

in the chain can occur either biographically (in the

course of system preparation), thermally (n the crea-

tion and recombination processes of a compression-

stretching soliton pair), or at the chain ends. In the

latter cases, the relaxation processes in the system can

be analyzed using the diffusive model. It is natural to

determine the soliton effective mass through the chain

total momentum corresponding to the soliton move-

ment with a certain effective velocity. Inasmuch as the

soliton virtually does not change its shape during the

process of movement, the effective velocity can be set

equal to its period-averaged value, i.e., to the ratio of

the substrate potential period to the time taken by the

soliton center of gravity (first moment) to move this

distance.

For the soliton transport over a period h of the

substrate potential in time t, the soliton momentum can

be written as p = m*h/t, where (by definition)

m* = constant is the soliton effective mass (averaged

over the translation process). Simultaneously, all chain

elements with mass m move from their initial positions

Yi to the final positions Yi
*, and the corresponding total

mean momentum (taken equal to the soliton momen-

tum) is m
t

P

i

ðY�i � YiÞ. Thus, the soliton effective mass

is m� ¼ m
h

P

i

ðY�i � YiÞ.

Inasmuch as Y�i ¼ Yi�1 þ h and Yi ¼ Yi�1 þ hli for

the soliton translation over the distance h, the sum
1
h

P

i

ðY�i � YiÞ ¼
P

i

ð1� liÞ ¼ �1 for the stretching and

compression solitons, respectively. As a result, one has

m� ¼ �m.

One can easily see that the effective mass of the

stretching soliton is negative. This follows from

the fact that, if this soliton moves in the positive

direction, all chain elements move in the negative

direction, and vice versa; for the compression soliton,

the direction of its movement coincides with that of

the chain elements.

We next estimate the ratio of soliton relaxation

times in the ideal and defective systems, regarding

soliton as a particle with mass m*. As a relaxation

mechanism, we consider only the process of soliton

disappearance at the chain ends, because it exhibits

the longest-time kinetics. For simplicity, we consider

the case of ‘‘strong dissolution’’ with only one soliton

in the chain. The corresponding relaxation time can

be estimated as s 	 R2

D , where R is the chain length

and D is the soliton diffusivity along the chain.

Therefore, sd

si
	 Di

Dd
for the chains of the same length,

where the indices i and d refer to the ideal and

defective system, respectively. The defects are mod-

eled by the barriers with a height much greater than

the pinning potential.

The value of Di can simply be estimated as

Di 	 lc
ffiffiffiffiffiffiffiffiffiffi

hV2i
p

, where lc is the correlation length of

the soliton motion (the energy of thermal motion is

assumed to be greater than the pinning potential), and

ÆV2æ is the mean square velocity of the soliton. The

diffusion coefficient in the system with defects is

estimated as Dd ~ l2W, where l is the mean distance

between the additional barriers and W is the probabil-

ity (in unit time) of barrier being overcome by the

soliton.

Since the barrier height Eb is assumed to be large

enough for the motion of incident soliton to be

considered as ballistic (on the length on the order

of lc), only those solitons overcome the barrier whose

velocity is higher than Vb ¼
ffiffiffiffiffiffiffi

2Eb

jm�j

q

. For the Maxwellian

velocity distribution, one can readily find:

W 	 1

l

ffiffiffiffiffiffiffiffiffiffi

hV2i
2p

r

exp � Eb

kT

� �

;

and, hence,

sd

si
	 lc

l
exp

Eb

kT

� �

: ð3Þ

It would appear natural that the correlation length lc
is much smaller than the distance l between the

additional barriers (this is also a necessary condition

for the system thermalization). Nevertheless, even for

the minimal value (unity) of lc, the exponential factor

in (3) increases the relaxation time of the system in the

thermodynamic equilibrium by more than 12 orders of

magnitude for quite realistic values Eb ~ 1 eV and

kT ~ 0.025 eV (room temperature) even for l ~ 105

(almost an ideal system).
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Conclusion

Thus, the above consideration has demonstrated that

the proposed modification of the Frenkel–Kontorova

model provides a basic possibility of its use in studying

the long-lived metastable states of the respective

systems. In particular, it has been possible to explain

the fact that long-lived thermodynamically equilibrium

systems whose properties are determined by the

preparation method and not by thermodynamics, can

exist under quite reasonable assumptions (height and

concentration of the additional barriers in the pinning

potential).
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